Package: ordinal 2023.12-4
ordinal: Regression Models for Ordinal Data
Implementation of cumulative link (mixed) models also known as ordered regression models, proportional odds models, proportional hazards models for grouped survival times and ordered logit/probit/... models. Estimation is via maximum likelihood and mixed models are fitted with the Laplace approximation and adaptive Gauss-Hermite quadrature. Multiple random effect terms are allowed and they may be nested, crossed or partially nested/crossed. Restrictions of symmetry and equidistance can be imposed on the thresholds (cut-points/intercepts). Standard model methods are available (summary, anova, drop-methods, step, confint, predict etc.) in addition to profile methods and slice methods for visualizing the likelihood function and checking convergence.
Authors:
ordinal_2023.12-4.tar.gz
ordinal_2023.12-4.zip(r-4.5)ordinal_2023.12-4.zip(r-4.4)ordinal_2023.12-4.zip(r-4.3)
ordinal_2023.12-4.tgz(r-4.4-x86_64)ordinal_2023.12-4.tgz(r-4.4-arm64)ordinal_2023.12-4.tgz(r-4.3-x86_64)ordinal_2023.12-4.tgz(r-4.3-arm64)
ordinal_2023.12-4.tar.gz(r-4.5-noble)ordinal_2023.12-4.tar.gz(r-4.4-noble)
ordinal_2023.12-4.tgz(r-4.4-emscripten)ordinal_2023.12-4.tgz(r-4.3-emscripten)
ordinal.pdf |ordinal.html✨
ordinal/json (API)
NEWS
# Install 'ordinal' in R: |
install.packages('ordinal', repos = c('https://runehaubo.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/runehaubo/ordinal/issues
Last updated 10 months agofrom:f38646c44d. Checks:OK: 7 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Sep 12 2024 |
R-4.5-win-x86_64 | NOTE | Sep 12 2024 |
R-4.5-linux-x86_64 | NOTE | Sep 12 2024 |
R-4.4-win-x86_64 | OK | Sep 12 2024 |
R-4.4-mac-x86_64 | OK | Sep 12 2024 |
R-4.4-mac-aarch64 | OK | Sep 12 2024 |
R-4.3-win-x86_64 | OK | Sep 12 2024 |
R-4.3-mac-x86_64 | OK | Sep 12 2024 |
R-4.3-mac-aarch64 | OK | Sep 12 2024 |
Exports:clmclm.controlclm.fitclm2clm2.controlclmmclmm.controlclmm2clmm2.controlcondVarconvergencedgumbeldlgammadrop.coefgcauchyggumbelglgammaglogisgnormnominal_testpgumbelplgammaqgumbelranefrgumbelscale_testsliceVarCorr