Package: ordinal 2023.12-4

ordinal: Regression Models for Ordinal Data

Implementation of cumulative link (mixed) models also known as ordered regression models, proportional odds models, proportional hazards models for grouped survival times and ordered logit/probit/... models. Estimation is via maximum likelihood and mixed models are fitted with the Laplace approximation and adaptive Gauss-Hermite quadrature. Multiple random effect terms are allowed and they may be nested, crossed or partially nested/crossed. Restrictions of symmetry and equidistance can be imposed on the thresholds (cut-points/intercepts). Standard model methods are available (summary, anova, drop-methods, step, confint, predict etc.) in addition to profile methods and slice methods for visualizing the likelihood function and checking convergence.

Authors:Rune Haubo Bojesen Christensen [aut, cre]

ordinal_2023.12-4.tar.gz
ordinal_2023.12-4.zip(r-4.5)ordinal_2023.12-4.zip(r-4.4)ordinal_2023.12-4.zip(r-4.3)
ordinal_2023.12-4.tgz(r-4.4-x86_64)ordinal_2023.12-4.tgz(r-4.4-arm64)ordinal_2023.12-4.tgz(r-4.3-x86_64)ordinal_2023.12-4.tgz(r-4.3-arm64)
ordinal_2023.12-4.tar.gz(r-4.5-noble)ordinal_2023.12-4.tar.gz(r-4.4-noble)
ordinal_2023.12-4.tgz(r-4.4-emscripten)ordinal_2023.12-4.tgz(r-4.3-emscripten)
ordinal.pdf |ordinal.html
ordinal/json (API)
NEWS

# Install 'ordinal' in R:
install.packages('ordinal', repos = c('https://runehaubo.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/runehaubo/ordinal/issues

Datasets:
  • income - Income distribution (percentages) in the Northeast US
  • soup - Discrimination study of packet soup
  • wine - Bitterness of wine

On CRAN:

28 exports 32 stars 8.64 score 6 dependencies 161 dependents 97 mentions 1.5k scripts 52.1k downloads

Last updated 10 months agofrom:f38646c44d. Checks:OK: 7 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKSep 12 2024
R-4.5-win-x86_64NOTESep 12 2024
R-4.5-linux-x86_64NOTESep 12 2024
R-4.4-win-x86_64OKSep 12 2024
R-4.4-mac-x86_64OKSep 12 2024
R-4.4-mac-aarch64OKSep 12 2024
R-4.3-win-x86_64OKSep 12 2024
R-4.3-mac-x86_64OKSep 12 2024
R-4.3-mac-aarch64OKSep 12 2024

Exports:clmclm.controlclm.fitclm2clm2.controlclmmclmm.controlclmm2clmm2.controlcondVarconvergencedgumbeldlgammadrop.coefgcauchyggumbelglgammaglogisgnormnominal_testpgumbelplgammaqgumbelranefrgumbelscale_testsliceVarCorr

Dependencies:latticeMASSMatrixnlmenumDerivucminf

clmm2 tutorial

Rendered fromclmm2_tutorial.Rnwusingutils::Sweaveon Sep 12 2024.

Last update: 2018-04-15
Started: 2018-04-15

Cumulative Link Models for Ordinal Regression

Rendered fromclm_article.Rnwusingutils::Sweaveon Sep 12 2024.

Last update: 2022-11-13
Started: 2018-08-25

Readme and manuals

Help Manual

Help pageTopics
Regression Models for Ordinal Data via Cumulative Link (Mixed) Modelsordinal-package ordinal
ANODE Tables and Likelihood ratio test of cumulative link modelsanova.clm
Cumulative Link Modelsclm
Set control parameters for cumulative link modelsclm.control
Fit Cumulative Link Modelsclm.fit clm.fit.default clm.fit.factor
Cumulative link modelsclm2
Set control parameters for cumulative link modelsclm2.control
Cumulative Link Mixed Modelsclmm
Set control parameters for cumulative link mixed modelsclmm.control
Cumulative link mixed modelsclmm2
Set control parameters for cumulative link mixed modelsclmm2.control
Extract conditional modes and conditional variances from clmm objectscondVar condVar.clmm ranef ranef.clmm
Confidence intervals and profile likelihoods for parameters in cumulative link modelsconfint.clm confint.profile.clm plot.profile.clm profile.clm
Check convergence of cumulative link modelsconvergence convergence.clm print.convergence.clm
Ensure Full Rank Design Matrixdrop.coef
Gradients of common densitiesgcauchy glogis gnorm
The Gumbel Distributiondgumbel ggumbel pgumbel qgumbel rgumbel
Income distribution (percentages) in the Northeast USincome
The log-gamma distributiondlgamma glgamma plgamma
Likelihood ratio tests of model terms in scale and nominal formulaenominal_test nominal_test.clm scale_test scale_test.clm
Predict Method for CLM fitspredict.clm
Confidence intervals and profile likelihoods for the standard deviation for the random term in cumulative link mixed modelsconfint.clmm2 confint.profile.clmm2 plot.profile.clmm2 profile.clmm2
Slice the likelihood of a clmplot.slice.clm slice slice.clm
Discrimination study of packet soupsoup
Extract variance and correlation parametersVarCorr VarCorr.clmm
Bitterness of winewine